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SECTION I

INTRODUCTION

During the development of a method for unsteady linearized

subsonic flows the question arose, how the vorticity within the

wake is distributed during the first stage of the wake formation.

This problem is treated here for both compressible and

incompressible flows.

The incompressible flow has been explored without the

restriction to the initial stage by Herbert Wagner (Reference 1).

The present study uses Wagner's concepts. With the restriction to

the initial stage one obtains rather specific results.

The nature of the problem changes if one takes compressibil-

ity into account. In incompressible flow the velocity of sound is

infinite; the flow field adjusts itself immediately to changing

boundary conditions and a changing vortex distribution, even if the

changes occur within short times. In compressible flows perturba-

tions travel during a finite time only over a finite distance. In

the beginning stage the wake formation has an effect on only a

small part of the flow field in the vicinity of the trailing edge,

but within this part the unsteady effects cannot be neglected.

Nevertheless, the basic results are the same in the two cases.

in both cases one obtains, conceptually, the actual flow

field by the superposition of two types of solutions of the partial

difrerential equation. One of these solutions satisfies the upwash

conditions at the wing, but does not allow for wake vortices. The

J(e,2)nd solution is obtained by a superposition of flow fields each

with ze.ro upwash at the wing, they are generated by one vortex shed

!rorn the leading edge at a certain time and traveling from then on

d~owr tr';im with the flow velocity. In an incompressible unstondy

'hw the potential is, of course, time dependent, but the time

J1,.c ,1ncfl doe.; not appear in the potential equation (given by the

i plae equation). Here these flow fields can be represented by

explicit formulae. In the compressible case, the potential

Sq4iiJtion can be brought into similarity form, so that instead of

., .-. .... - . ,- .-.. - . .- •. ..... ........... . .. . -.........-. ..- .-. .. -,



- .- * - .. *4* '. . . - - . . - 7 TO .. " 7r ,--

three independent variables (two space variables and time) one

deals only with two independent variables. But the resulting

partial differential equation is rather complicated. Fortunately,

* only a very limited amount of information is needed to find the

vortex distribution within the wake. A general discussion is
sufficient; only one constant (dependent upon the Mach number)

remains undetermined. In the incompressible case these data are

expressed in explicit formulae. The availability of such formulaie

allows one to give specific information about the resulting flow

field. This facet is derived in an Appendix B.

.4 . -



4.. SECTION II

INCOMPRESSIBLE FLOWS, BASIC CONCEPT2

Considered is a two-dimensional nonsteady incompressible

flow. Let x and y be a system of Cartesian coordinates in which

the x-axis has the free stream direction, and let t be the time. A

thin profile is subject to small time dependent motions or

deformations in a flow with the velocity U. The wake vortices move

with the local velocity. The perturbation of the original parallel

flow due to the wing are considered as small. The vortices,

therefore, move with the free stream velocity U. The airfoil is

replaced by a slit extending along part of the x-axis. An upwash

will be imposed along this slit that depends upon x; with respect

to time it is given by a step function. With results for such an

upwash, it is then possible to generate the response to an upwash

which has the same x dependence and arbitrary time dependence.

Without loss of generality, one can assume that the step occurs at

time zero.

The perturbation potential depends on x,y, and t. But the

potential equation

4,-+4 = 0

xx yy

' 1os not contain the time explicity. We do not allow the airfoil

t.hickness to change with time. The upwash is, therefore, the same

on the upper and lower sides of the airfoil. It follows, that the

-pwash 4, is symmetric with respect to the x-axis. The potential,

t ; y.r -rivatives with respect to x and t, and the pressure are then

-int yrrnr~ymmetric. There will be, of course, a jump of the potential

b.twceen the upper and lower sides of the wing and of the wake. At

f ,! wa-kr, the pressure is continuous, and therefore, because of its

• ,ti ymmetry, zero.

Rn" .ei of the assumption of small perturbations, the

.. tii rb t ion pressure is given by

S.0K
S.



_Ap = -P(Up + . (1)

Since at the wake the pressure is zero, it follows that the

potential at the upper side of the wake has the form

.(t, x, 0+) = f(t - (x - xtr )/U) (2)

where xtr is the x coordinate of the trailing edge. (0 means

that one approaches y = 0 from above.) For the lower side one has

the same expression with the opposite sign.

The perturbation field is decomposed into two parts. A

steady part is given by the circulation-free flow determined by the

upwash condition (after the step has occurred) at the wing. In

such a flow one finds adjacent to the trailing edge an infinite

* pressure at points of the wing and an infinite upwash at points of

.. . the wake. Superimposed to this steady flow is one caused by the

* . time dependent vortex distribution within the wake (as it exists at

the current time). At the wing zero upwash is prescribed. Outside

the wake and the wing this flow field satisfies the Laplace

equation. This second field gives singularities at the trailing

edge of the same kind as the steady field. The potential at the

upper side of the wake must have the form of Eq. (2). The function

f must be chosen so that the trailing edge singularities cancel

those of the circulation-free flow.

The potential of the circulation-free flow can be developed

* with respect to the distance from the trailing edge. Let the

origin of the x,y-system lie at the trailing edge and let

z = x + iy

Th.n th lowest order terms of the development of the perturbation

potential are given by

-7 ¢ = Imf2

'IM

,.7

!)> >.- <- " .> +.-' >X ..:..- i> -> .+<>:'..% > % ' L'>'i.' -:<:>.- :: -<> < -.:".f> L- >>,.> -:.>>.:... -. . ., >"<



with

a 112z / 2 + a z + a z 3 / 2 +I/2 1 3/2

Since for this flow the boundary conditions are independent of'

time, the coefficients "a" are independent of time. No constant

term occurs because at the location of the wake there is no

potential jump in the circulation-free flow. Then

*x = Im(dQ/dz)

(y = Re(d2/dz)

Specifically within the wake, i.e., for z x > 0

*x = 0

-1/2 12 2
(y = (1/2)a x + a + (3/2)a 3 / 2 x

and at the upper side of the wing z = x < 0 (z = -IxJ)

x = -(/2)/2' + (3/2)a 3 /21x11/2

= a 1  + 2a 2x + ...

pe'-iic exarmples can be readily obtained, for instance, from the

ormr Li rri ved in Appendix E of Reference 2.

No ic that thc term in (P and (y with the factor xl 12
c) h t th . er m i x y X

i ,; with th - same coefficient. The terms in (P at the wing do

()t ,-ntain fractional powers. (They are determined by the

boundary conditions for the upwash.) The wake development is

. c1,1v dotermined by the coefficient al/ 2 .

F rm ae ,, for a single vortex in the wake in the pres;ence of aIri , wi ng ar deri d in Appendix A. There are the formul -ir, on

wi ch f h work of Wagner s based. In the present discijssion wh,.r,

.; r ':t our:;e] i::; ,from the outset to small times and oon-

5
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sequently to small distances from the trailing edge one obtains

simplified formulae, because then the wing chord is very large in

comparison to the distances under consideration. Therefore, we

assume for the evaluation of the wake potential that the wing

extends along the x-axis from -® to zero. The formulae so obtained

could alternatively be obtained by developing the complete

expression of the appendix under the assumption that the distances

from the trailing edge are small. To obtain the potential for a

single vortex in the presence of such an infinite slit we first

consider in an x, y plane (Figure I)

Z ax

11

1 1 1

(Z ) = Im log l -aa > 0 real

with

This is the flow field with two vortices of opposite sign at the

points x I = a and x1 - a. The velocity component normal to the

y -axis is zero. The yl-axis is mapped into a slit from - to zero

along the x-axis by setting

1 /2
z z

1~ /0a F /2 > 0 r',;3l

t hn on1 obtai ns

11/2 21/2
- im log z1-- 2 Im[log(z - 2 log(z + )] (3)

>0'*. ;xpr,'2i on has one logarithmic singul-rity at z = ,. Other
1 /2: .. r ,Alr'i tiesn ocw.jr at the trailing edge because of the power z

V. . ii is



N.: Yl (IMAGINARY ZI AXIS)

X1 (REAL Z1 AXIS)
X1~- X1 Uo

y (IMAGINARY Z AXIS)

-WING
___WING___ _ oX (REAL Z AXIS)

.1z

Figure 1. Conformal mapping of the right half of the x ,yl plane

with logarithmic singularities at x= a and x a into

an x,y plane with cut along the negative x-axis and a
1/2

logarithmic singularity at x = z /

:'I,



0 for z - x >
W for 0 < z =x + i O <

T = T - 2 Im log(&I 2+ilx I / 2 ) for z = x + iO < 0

Moreover,

1/2

OX = Im(z-112 L_

* Re(z-1/1 /2
y

Then for z = x > 0 (wake)

OX = 0

" -11 2  1/2
, .O.y x - &

for z = x + iO < 0 (wing)

1/2
...-. ' ¢x) = - x

OX *x -01

y = 
0

a- These expressions have the same singularities at the trailing edge

as the circulation-free flow.

'•a.-

'."

,- "-.
a',.o'

"'p".
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:;I("'I ()N I 1 1

, THE FORM OF THE WAKE POTENTIAL IN INCOMPRESSIBLE FLOW

We express the potential due to the wake by a linear

combination of expressions (3). Let f(E) be some function of the

umbral variable F. This potential is then given by

4.w (t,x,y) = f(E)Im log z112 - 11d/
wake 0 z 112 + 1/2

rut IUt 1/2 1/2

= f(E)Im log (z - E)dE - 2 f f(E)Im log(z + E )dE

0 0

In the limits of integration we have taken into account that the

wake extends from 0 to Ut. The second term in the last equation is

analytic. The relation between the function f and the jump of the

potential at a point x between the upper and lower side of the0

wake can be determined in the following manner. The circulation

integral 4-fgrad 4.ds for a single vortex Im log(z - ) is 2w.

Consider now a path which starts and ends at the same point x0 of

the wake and which encloses the wake downstream from the point x
0

(the wake ends at a finite distance namely x = Ut). (See Figure

2.) The second term on the right in Eq. (4) is regular at and in

the region within this path and therefore gives no contribution.

One obtains

grad p (t,x,y).ds = 4(t,xo,O+)-¢(t,x ,O- ) = 21T fxf

But 4 is anttisymmetric. Hence,

f U t

,(tx o) = f f(F)d10 'X 0
00

f(x ) = - - t x 0 (5)
0 T3x o

K"-[ fXo 9

U
(.. . ,.*, - - -_ - .. ,. 2%- -... . -,., .. X.-;.-. . - . .h.~ k , ..- ; -- ) -- ,-'..., -...- )... ---.



WAKE

WING IN___Ut
X0  %,

Figure 2. Wing and wake at time t. Path of integration for the

determination of the potential difference between the

upper and the lower sides of the wake at a point x0

The path starts and ends at x o. One proceeds around the

vortices enclosed between E - x and Ut in the

counterclockwise sense.

o-
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The form of the potential within the wake has been found in Eq.

(2). The derivative 30/ax has, of course, the same form. The

function f(&) therefore has the form g(t - (E/U)), and one obtains

Ut 1/2 1/2
wake (t,x,y) f g(t - (&/U))Im logz I1 2  112 dC (6)

0 z +

The singularity in ¢y which arises in this expression at

points of the wake adjacent to the trailing edge must cancel the

corresponding singularity in the circulation-free flow around the

wing. This is the condition which determines the form of the

function g. We form

wake 12awk Ut -1/2 (1/2
= g(t - (&/U))Re z d

aY 0 z-E

For z = x > 0 one obtains

I €wake 1 fUtg(t - Wu)) &1/2
ay 1/2 0

- 0

. In order for this expression to cancel the corresponding

singularity in the circulation-free flow one must have

"1 =imx~ JUt 1I/2_

lim f g(t - (&/U)) C 1 d& = const. ], 0

where the right-hand side does not depend upon the time. Let

= q Ut

x= x Ut

Then one obtains

fim U 1/2f t 1 1 2  g(t(1 q)) q 1/2 dq

Xo0 0 x - q

VV

_a ",L. 2e , ,B,."g . "f "., , .".)"g " ,< , ,.5 .,f,_"..' ";.L-.'.,.',." ' " -". " . f •". """ ''" ".. ..1. ..1.'



and one postulates

un1 1/2
Ji t giti - q)) dq = const• .,.X+O 0 x -q

This gives the requirement that t I / 2 g(t(1 - q)) be solely a

function of q.

g(t(1 - q)) = f(q)t

The argument of g is t(1 - q). It follows that f(q) has the form
N const(1 - q)-/2 Therefore,

g(t( - q)) = t -1/2 - q)- /2 const

or, after one returns to the original coordinate with a different

choice of the constant,

g = const(Ut - 11/2 (7)

Thus,

• (t,xy) = const I- t)-1/2 Im logz (8)
wake 0 z / 2 + 1/2

Eq. (8) is the crucial result for the incompressible flow.

12

_'4~
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SECTION IV

THE WAKE IN LINEARIZED COMPRESSIBLE FLOW

As in the incompressible flow, one suddenly imposes at time

zero the boundary condition of constant upwash at the wing. If the

wing extended along the entire x-axis, one would obtain a compres-

sion wave and an expansion wave respectively on the upper and lower

sides which at a (positive) time t generate fields of positive and

negative perturbation pressure and constant upwash out to a

distance a t. (See Figure 3.)

Perturbations float downstream with the free stream velocity

U and expand with the velocity of sound a. If the plate ends at

x = 0, the above flow field will terminate at a circle around the

point x = Ut with radius a t. We consider times which are

sufficiently small, so that perturbations coming from the leading

edge do not affect the region in the vicinity of the trailing

edge. (See Figure 4.)

Assume first that no vortices are shed from the trailing

edge. Within the circle described above one then obtains a flow

field caused by the pressure difference between the upper and lower

side. This flow field will have similarity form with respect to

time, that is the velocities will depend only upon x/t and y/t. At

the portion of the plate within the circle one will have the

del"ired upwash. At the portion 1, 2, 3 of the circle (which moves

with time) the solution within the circle must match the solution

for the int inite plate, at the remaining portion of' the circle it

mu.it match the undisturbed flow. One expects that at points of the

x--axis downstream of the trailing edge and adjacent to it this flow

has a singularity in the upwash of the same character as in an

incompressible flow. This will be discussed in some detail.

-uperimposed to this field is another one due to the vortices

.df'romn the trailing edge. A single vortex which leaves the

trailing edge at time t moves downstream with the velocity U. It

generates a field which also has similarity character; it depends

: .olely lipon x/(t - t) and y/(t t). The intensity of the vortices

.,..... ." . "-... .....-. ... " .,-,' " ,. ' . - - - . --.. . " .. ./ . , . . " '. ". -. -" '. - -, . "- "



i,.,COMPRESSION WAVE::.,. tt t tt
CONSTANT UPWASH Ot

t t INFINITE PLATE
-"t , t

CONSTANT UPWASH ot

t t t I t EXPANSION WAVE

4' . Figure 3. Perturbation generated in a parallel flow with

-. velocity U by an infinite plate (double line)

-i suddenly set in motion in the y-direction with

~a constant velocity. one obtains a constant
" upwash for lYl < at and no upwash at jYj > at.

"- .. At y = at and y = -at one has, respectively,
a compression and a rarefactionwae

"wave.
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N.

-=lb -..- COMPRESSION WAVE Y

t t t

.at

4at

-: tt tlt
Qt

EXPANSION WAVE

Figure 4. Perturbation generated in a parallel flow with velocity

U by a half-infinite plate (double line) suddenly set in

motion in the y-direction with constant velocity. Along

the negative x-axis outside of the circle one had the

same field as for the infinite plate; within the circle

there is a complicated transition field.
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shed in this manner will depend upon t. The function which gives

the intensity must be determined in such a manner that the

singularity generated in the circulation-free flow is cancelled at

all times by the flow field generated by the vortices shed form the

trailing edge. In the following we shall develop these ideas in

detail.

After a linearization for the vicinity of a parallel flow the

perturbation potential in the two-dimensional case satisfies the

equation.

(a2 - 2)4 + 2 yy - 2U xt - tt - 0 (9)

The potential of a vortex moving downstream with the velocity U (in

other words, with zero velocity with respect to the surrounding

fluid) is given by

*JIO € - Im1

- log(x + iy - Ut) (10)

The real part in Eq. (10) would give a moving source. This

expression should satisfy Eq. (9). Let

z = x iy

One has, indeed,

-20 -(z - Ut)
yx

12 = (z - Ut) -

0X t = U(z - Ut)
2

2 2
= -U (z - Ut)

tt

it is readily seen that Eq. (9) is satisfied.
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Similarity solutions are obtained by introducing independent

variables

= x/t , n = y/t , t = t (11)

and

.(x,y,t) = t(Unt) (12)

If p actually depends upon the third variable T, this is merely a

coordinate transformation. A similarity solution arises if the

function p is independent of -. To describe the circulation-free

flow, we must set a = 1. It gives for fixed and n velocities

which are independent of time (t or T). This is in accordance with

the boundary condition of constant upwash. In the velocity field

due to a single vortex moving with the velocity U one must set a =

0 for then the circulation around this vortex (the jump of 0) is

constant if one travels around the vortex along some path returning

to the same point.

One obtains from Eq. (12)

a 

-°2

"xx =

JIP
YY T nW

":" cu-2
= xt T 1(a-1 ,  + ln

ST [a( a-1 + -a + 2otp

2 2 2+.1  + + 2 Frip + n 4) - 2 FT.p - 2 n + "1 } T

Tvn, one obtains from Eq. (9) for a = 0
;.

a- U2 + 2U - 2) + 2PnTa - n ) + 2Un - 2 n)

(13)
U - 2 TO + -1 (-2U + 2E) + -r .(2n) - 2 0

2 = 0

( 2%
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Futhermore, for a 1 1 and independent of i

CE(a 2
- U2 + 2EU - +2) * n1(a2 - 2

(1 4 )

1" 4'n(2Un - 2 Cn) = 0

-The last two equations have the same principal parts (coefficient:3

of the highest derivatives).

The behavior of particle solutions at the trailing edge can

be studied by a development with respect to C and n. As mentioned

above, is antisymmetric. The form of the lowest terms is

obtained by setting = 0 and n = 0 in the coefficients of Eqs.

(13) and (14). Suppressing the time dependence in ' one obtains

-". 2 U2 2
4' (a - U) + a = 0 fora-1 (15)

Ti T
"" 2 U2 2

( ) + a + 2 Uip=0 for a= 0 (16)

The term UI, in the second equation already gives a contribution of

-V higher order in '. In essence one deals with the Laplace equation.

Setting

= ( + i(l - M2 )/2 , M = U/a

-.-" de obt-ains for the lowest order terms in the development in Eq.

(1112

-. = al/ 2 Im 1/2 + a Im

'he upwAsh in the case a = 1 is then given by

a_ _ M2 1/2 -112
___(1 ) [Pa 1 /2)Re(4 a]

th wirig (F < 0), Re( -1 /2) = 0. The coefficient a1  is given by

b',urary condition for y prescribed at the plate. So far the

f. .
- 4!. *!;
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I
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coefficient al/2 is unknown. Its determination requires the

solution (in terms of and n) of the boundary value problem for
the circulation-free flow.

The flow due to a single vortex moving in the xy-system with

a velocity U is required to satisfy the boundary condition qy 0
y

at the wing. Its behavior in the vicinity of the trailing edge i3

expected to be given by

= b 1 12  Im(c )

(The coefficient corresponding to a1 is zero.)

To obtain an expression which gives the moving vortex

singularity we rewrite Eq. (10)

1"€ m[Iog~ x- * - U) * log I 3 l m~logV, i - 'd) log
. 10 (( I o

Ex* ept for the additive term log 7 "is expresi oDn nas simil1rity

form. The entire expression sat is,, F ;. i ), b'-ause t h

original expression satisfies .I r m, i mi rry

parts of the expression (17) s Lbst t IrA Lq. (1 j) will give,

respe.&tively, a real and an imagi.dry -xpr..:,i Dfl. st "m 1M. c , ..

T nerefore the imaginary part sati stf' ,s Eq. ,1 ) , ,ven it ne omits

- - t,.rm trat -rOn time rr v! ,:r. I .: , . r',- ,l p;ar't h e

,,.'. , : rI'r t part gi v2:: - i k - 7 1. i may ror, i7 a .upri.'e that

t... xpr:,.:i i for t m )ving va)r't -x (E;. (1/}) f'i t it, . i M I - i ty

,'." .'¢p tr : , whi e i' .tit V r th+ maying.4 :;ar e f l;{: t., 1,- .2.,. Tri:;

A 12, 4 ")ur; , A, :; howri hy 'Ii re.'t :substi tution i rito F.j 1 '() for

. ; 'po:;o it i prc-ct! al to i nt roduce
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Details are omitted. Accordingly, the expression describing a

moving vortex is given by

) = Im log( + in - U) (18)

This expression fails to satisfy the boundary conditions, zero

upwash at the wing, and zero perturbation at the circle around the

point = 0, n = 0 with radius "a." Therefore, a particular

solution is superimposed which corrects for this failure. It

depends on the parameter U/a = M. At the trailing edge it will

have a singularity

N2 1/2 1/2
( )(M)Im( + (1 M in)

The value of bl/ 2 (K) is the only information needed to determine

the potential in the wake. Without detailed computation the value

of this constant is not available.

We return to the coordinates (x,y,t). The expression with

zero upwash at the wing for a vortex generated at the trailing edge

at time t, has a logarithmic singularity at U U, q 0 given by

.'J = log( x + i U)

t -t t -t

.. the origin, this particular solution gives a term

. 2 1/2 1 2
b1 / 2 (M)im (x + (I - ) iy)
,-2t-t

*4.. °
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Let the intensity of the vortex shed at time t be g(t). The time

dependent singularity at the trailing edge is then given by

b(1/2 g + i(I - M2 1/2)1/2
b(M) 1/J g(t)Im (x + iLl M I) dt

0 t

t
- b(M) 1/2 Im(x + iWI - M2 ) 1/2y)l/2 f g(i) 12 dt

0 (t - t)

Now the postulate is imposed that this expression cancel the

singularity in the circulation-free flow which was given by

a/2 (M)Im(x + iWI - M2 ) 1/2y)

This expression does not depend upon time. The integral

tf g(z)_ /2- dt

0 (t - t)1

must therefore be a constant, independent "pon ime. Let

1 - - = vt

The integral then transforms into

'I..I

f v11/2[Et12g(t(1 - v)]dv
0

1I/2
In order for t g(t(1 - v)) to be independent of t, one must have

-1 /2 -1 /2
g = const t (1 - v)

or after substitution of v

g - const t

?1
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This gives the time history of the vortex shedding. Because of the

antisymmetry of the potential with respect to the x-axis, the

circulation-free flow and the potential added to the expression

(18) (to satisfy the boundary conditions) give zero potential for

x > 0 (for x < 0 at the wing there will, of course, be a potential

jump). The potential as one approaches the wake from above or

below is, therefore, solely given by the superposition of

expressions, Eq. (18).

t

"" 4(t,x,+O) g(t)Im log x + iy U) dt

A clearer picture for a fixed time t is obtained by introducing

U(t - t) - x

Then one obtains, with a different constant,

Ut

-(tx,+O)0 (Ut - )112 Im(log(x + iy) - x)dx

which shows the vortices which appear at the station x. The vortex

distribution extends from zero to Ut, the intensity is given by

const(Ut - x) - /2 According to the discussion given in conjunc-

* ,tion with the incompressible case (Eq. (5)), one then finds

'(t,x,+O) = 27 const(Ut - x) 1 2

-1/2
The coefficient of the x singularity for *x at x < 0 and for 4y

rx'y
at x > 0 in the expression due to the shed vortices is independent
of time. The constant in all the expressions is chosen so that

they cancel the corresponding term in the circulation-free flow.

• " -1/2
;: Notice the (Ut - x) singularity that arise at the

: . downstream end of the wake. It is caused by the fact that the wake
,*mids rather abruptly. The potential goes down to zero as

V.

.,..
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1/2
(Ut - x) . A sudden jump of the potential would correspond to a

-1
single vortex, and then would behave as (Ut - x) . Under

y
present conditions the transition is somewhat smoother, and the

power for y is -1/2 rather than -1.

23
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APPENDIX A

THE FLOW FIELD OF A POTENTIAL VORTEX IN THE VICINITY OF A PLATE
IN TWO-DIMENSIONAL INCOMPRESSIBLE FLOW

The flow field is obtain by a sequence of conformal

mappings. Figure A.1.

z1 =Xi + iy

We begin (as in the main text) with

0(z1 ) = Im log Zl+ a a > 0, real

The transformation

1+z z -1

maps the right half of the zj-plane into the outside of the unit

circle in the z2-plane. (The left half is mapped into its

inside.)

One obtains
z2

" z 2) = Im log 2 -I

with

1 a
bz 2a

The transformation

z - (1/2)(z 2 + z2  ) , z2 = z +
'-I

maps the outside of the unit circle in the z2-plane into the

whole z-plane with a slit extending from -1 +1. One obtains

25
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Y!

O C - X I

YP

-I--I..

X8. X

Figure A.. Sequence of conformal mappings from the right half of
an Xl, Yl plane with a logarithmic singularity to a

Sslit in the x,y plane extending from x =-1 to x =1
~again with a logarithmic singularity.
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, m log1 - , .+ +) (A.1)

(z + z- - - 1)

For the constant b in the above formula we now introduce

b = +

then

b - 1  #

Eq. (A.1) must be applied if the extension of the wake is not small
in comparison to the span of the wing. It is the expression

underlying the work of Wagner.

a"
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APPENDIX B

DETAILED EVALUATIONS FOR THE INCOMPRESSIBLE CASE

The constant occurring in Eq. (8) (for incompressible flow)

is found from the requirement that the expression €wake cancel the

corresponding singularity in the circulation-free flow around the

profile. This requires the evaluation of the integral occurring in

this equation. Beyond this we are interested in the properties of

the flow field due to €wake' in particular along the x-axis.

There may be a question whether Eq. (6) (which is more

general than Eq. (8)) gives zero pressure within the wake.

Therefore, we evaluate 0x and ot directly from this equation. The

result to be expected is found from Eq. (5)

ox - -g(t - (x/U)) 0 < x < Ut (B.1)

Then, because the wake perturbation pressure is zero, from Eq. (1)

ot . nU(g(t - (x/U)) 0 < x < Ut (B.2)

We restrict ourselves to an evaluation of ot. To avoid in Eq. (6)

a differentiation of g with respect to t, we introduce, in essence,

instead of the argument of g as a new variable.

Ut - - v
(B.3)

-d& = dv

The the limit = 0 gives v = Ut,

the limit E - Ut gives v - 0.

One obtains

Ut 112 ( t - V 1

wake = g(v/U)Im logZ 12 v) dv

0 z + (Ut - v)

29
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ZIF The differentiation of the upper limit with respect to t gives

11/2~z
Ug(t)Im log z1/

z

The imaginary part of log 1 is not one-valued. Consider a point

z = x > Ut. This is a point outside of the incipient wake and

because the antisymmetry of the potential with respect to the x-

axis 0 - 0. Therefore, log 1 must be taken equal to zero at these

points and, by continuation, everywhere else. We are, therefore,

left with differentiations under the integral sign. One obtains

Ut 112
awake j g(v/U) U IM -z d

at 17U -v I 2 I  z - (Ut - V) d

Ut -I/2awake 1/2 ____v,11____

(v/U)(Ut - v) 2 Im z (Ut - v) dvax 0

For z = x > 0, but different from Ut - v, the imaginary parts are

obviously zero. A contribution to ot' therefore, comes only from

the immediate vicinity of the point v = Ut - x. There one obtains

as dominant terms

wake x) Ut - x b -dvgw~e ((Ut -X)U fIM

a -g U v = Ut - - a v - (Ut - z)

Ut - x + bxt x
= -g(t - !)U Im log(v - (Ut - z))

v- xa a

--(g t u)U Im log z _x -a

a > 0 small, b > 0 small, a and b real. Assume that z approaches

th2 point x from within the upper half plane.

Z - X + il

30
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Then one has

lim z - x + b lim b + iE
logs - -a- log - e=iC 0 l~z - x - a E+0 -a + ic

Hence in accordance with Eq. (5)

wake(tx,+O) = Urg(t -

The procedure for ax is In essence the same.

For the remaining evaluations the specific form of g (Eq.

(8)) is substituted. Introducing v as above (Eq. (B.3)) one

obtains

Ut

Owake (txy) = const f v-1/ 2 Im logz1 /2 - (Ut - v)1 /2 dv
0 z + (Ut - V)

Then

wake Ut -1/2 z1/2
a t const U Im f v-1 2 (Ut - v) v -(Ut - Z) dv

)wake Ut -1/2 1/2 1
ax const Im v (Ut - v) 1/2 - dv0 z (v - (Ut - Z))

Ut
wake 112 I1/21

const Re v- (Ut - v) 12 dv

0 z (v- (Ut- z))

We make the lengths dimensionless with Ut

v = Ut.w

z = Ut.z

1 31
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Then

awake = - eonst U1 1 2 t 1 / 2 I r I

at constU 1 2  M 1 1
awake const(Ut) - 1/2 I M I

wake const(Ut)- 112Re 12 (B.4)

p_, with

1 -1/2

I J w-1 1 2(I - w)-2 z - dw (B.5)
0 w- (1 -Z)

1
1 2 = w-I12( I  w) I /12 -12 I dw (B.6)

0 z I 1  ( W  - I -Z))

2

We set w - q -(Then

I

I = 2z 1/21( I  q 2 )-1/2 q2 _ (1 - Z)]-1dq
0

(B.7)1

2z-112 q 2 1/2[q2 _ (1 - -

0

1 2 is rewritten

11
C-I : _21/( I - q 2 )- 1 1 2 dq +2-1/21(1 h q 2 ) 1/ 2 q2 (1 - z)] dq

;-. 0 0 d

(B.8)
1121 Z 1 2 = - z + I

I can be evaluated in terms of elementary functions. The basic

formula, which, of course, can be verified by differentiation, is

:'ound in Reference 2 (Eqs. 236, 3c, and 3d), x < a is real.
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(x COa2 _x2(x- a - x(B.9a)

-I flog(-ax + a2 1 + /(a2 - a2 )(a 2 - x2 ) - log(x - c) (

a a 2

fdx=

(x -a) 
2 - x2

(B.9b)

_._-"arc sin a ax > a > 0, a real2.'. 2 a ~ x - a ) J a

For real a the first version is practical for Jal < a; it can be

used also for complex a. The expressions (B.7) and (B.8) can also

be evaluated by the calculus of residues. The necessary trans-

formations are shown in Appendix C, but in principle the calculus

of residue requires the same transformations as the systematic

.. derivation of Eqs. (B.9). In the present case a = 1 and x = q.

dq 2

(q - a)1 - q
(B.1Oa)

S 1log(1 - aq + - a2 )(I - q2 )) - log(q -)f

1-a 2

dq v,_a2=
-T

(B.1Ob)

1 arc sin 1 lai > 1, a real
2 a

a-i

For z = x > 1 we set

- b2

- 1 x 2 b (B.11)

I3'-3
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Then from E.(B.7)

I 2z2f(1 q)2 11 (q 2+ b 2) dq
10

11
z /2 f 1 q2)-112( -1 1

l a 0 - ib q +i

Here Eq. (B.l0a) is applied. We set

-411

x~ ~ ~ ~ ~ ~ ~ c =b ( b 
ib12 l g( b 

og q i )

log( + iq + 1 + b 2( 1 - q 2  lo=xib

* ~Onea obtin

I =T x - 1 - 1 x > 1( . 2

-iglrt (1ic arb2 es i b th 1ne n at b 1 x. We wrt
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Then

1 2z1/2 1 - q2)-1/2(q2 c,2 -dq

0

.-. (. -I 2 I 2 I/1-

= z /2 - 2 12 ( - a) - (q + a)-]dq
0

With Eq. (B.lOa) one obtains

I =

z1 1 ) lg1177~
-112 1 2 1/2 -

- (/2 -1 - a2  log( - aq + ()I - log(q- a)

q=0 0a2 q)2

- log(l+ aq +/(1 - a )(1 - q) log(q + 1a)
0 q 0

The singularity of the integrand expresses itself by the term

log(q - a) . We let z approach the point x in the upper half plan.

0

z x + e E: > 0 small

"'" __Ix 2

a(z) z - 2 C +

is then a point of the lower half plane, the variable of integration

q is real and ranges from zero to one. See Figure B.1. A cut from

q = a to q = -i needed to make log(q - a) one valued, does not

intersect the path of integration. In the limit c4O the modulus of

q - a is 0 for q 1 1 and +7 for q 0 0. Figure B.1 therefore

im log(q -E) log(1 - a(x)) - loga(x)) :-i

0

.. 3

, 35
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q IMAGINARY

PATH OF INTEGRATION
0 /q

a a

BRANCH CUT

Figure B.1. Determination of the argument of (q - a) and (0 -a)

in the complex q plane. A cut from the point a to

negative imaginary infinity does not intersect the

path of the integration from q = 0 to q = 1. As one

moves in an k, j plane,(y> 0)to = 0, a moves in

the lower half plane toward the real q axis.
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In the remaining terms one can replace immediately a by c(x) =

/FTT. One obtains

S- )-1/2

For z = x < 0 one can immediately replace z by -Ixj. Then

/I 2 -I1

1/2 1/2

z . i Ix i

We set

1 - = 1 + I = 2

Then

=i1i 1 - q2 ) -1/2 -1 (q + a) -1
C 0

Here Ial > 1 and the second version of Eq. (B.1O) is applied

-li 1/2 2 -112k 1 1 + g
(a - 1) jarc sin -.ql arc sin

0 0

Substituting the limits one obtains the same expression as for
: 0 < x < 1

S= -ilT(1 - -~1/2 1

We repeat Eq. (B.12)

S(x - x)-1/2 - > 1
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- xReturning to Eqs. (B.'4), using Eq. (B.8), and substituting x 7t
one finds

= 0 x > Ut

Ot +con5' Uir(Ut - X)- 1 x < Ut

Ox a0 x > Ut

Ox -const irCUt - x-120 < x < Ut

Ox const ir((x) -11 (Ut -X)- 1/ x < 0

-112-1/2y . w const(-x +/ (Ut -X)) x > Ut

*y . -iT const(x 1 /2) 0 < x < Ut

-38



APPENDIX C

TRANSFORMATIONS OF THE EXPRESSION Il, EQ. (B.7)

1II1 2 f -Z /2 - dq
1 (1 - q)/(2 - (1 - z))

q')11 (qZ)

Since the integrand is an even function of q, we can write

+1-1 z/2 f I2dq
I-I (I -1/2 2 - (1 -

-q( (q Z

*1, The transformation

2 1 + qs T1 - q

2
A-p +1

generates a rational integrand and maps the points q = -1 and
q +1 into p = and p = u, respectively. One obtains

00

I1 /2 + 1)2dp
0 [( - 1)(p2 + 1)2 + (p2  2

Since the integrand is an even function of p, one can write

0

-1/2 + (p2 + 1)dp
1, [( f 2 2 2 2- (z - 1)(p + 1) + (p - 1)

In this form the integral is suitable for the evaluation by the
calculus of residues. The denominator can be rewritten

39



(2 12 - 2 2

P 2[ (1 * 2 [P2 - 1 -)

From this expression the location of the poles is readily found.
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